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Supplementary Material

1. Overview

This supplementary material presents additional results to

complement the main manuscript. We first introduce our rela-

beling pipeline in Sec. 2 and show some bi-layout annotation

examples in Sec. 3. In Sec. 4, we provide more qualitative

comparisons with the state-of-the-art (SoTA) methods. In

Sec. 5, we show more examples of our ambiguity detection

under different scenarios to validate the robustness of our

method. We conduct additional ablation studies in Sec. 6

to compare our method in more comprehensive settings. Fi-

nally, we show the limitations in Sec. 7 and provide some

future research directions in Sec. 8.

2. Semi-automatic Relabeling

We introduce our semi-automatic relabeling pipeline for

annotating the second type of layout on the MatterportLay-

out [3] dataset as follows and shown in Fig. 1:

(a) Given the original annotations from the MatterportLay-

out [3] dataset. We check each column of the panorama,

if there are more than two annotations in the same col-

umn, we define it as the occlusion part. As shown in

Fig. 1(a), blue line indicates the original annotation, and

the dashed lines highlight the occlusion region.

(b) Next, we take the original annotation and project it

to the bird’s-eye view floorplan coordinate, aligning it

with the center of the camera. As shown in Fig. 1(b),

the isolated red point indicates the center of the camera.

(c) After obtaining the annotation on the floorplan coor-

dinate, we categorize the corners as either visible or

invisible, representing whether the corners can be seen

from the center of the camera or not. We find the closest

visible points in the occlusion region as our candidate

corners. As shown in Fig. 1(c), the red boxes indicate

our candidate visible corners.

(d) Once we have our candidate corners, we generate sev-

eral annotation proposals using these points. As shown

in Fig. 1(d), the red lines are our annotation proposals

based on the candidate corners.

(e) We select the best proposal, which should provide a

clear boundary between different rooms. Note that this

is the only step that needs a human decision. As shown

in Fig. 1(e), we manually choose the proposal to sepa-

rate the two rooms in this case.

(f) Finally, we project these newly defined corners back to

the panorama view, creating our relabeled annotation

for the panorama. As shown in Fig. 1(f), green line

indicates the relabeled annotation.

We introduce our semi-automatic relabeling pipeline with

(a) Original annotation

(f) Relabeled annotation

(b) Floorplan projection (c) Find candidate corner

(d) Generate multiple proposals(e) Final decision

Figure 1. Our relabeling pipeline. Blue line in (a) and Green

line in (f) represent the original annotation and our relabeled

annotation, respectively. The layout boundaries are shown on the

left, and their bird’s-eye view projections are on the right. The

dashed lines in (a) highlight the occlusion region in the original

label.

the above steps, which clearly explain how we relabel the

MatterportLayout [3] dataset. With this relabel pipeline, we

can generate the enclosed type of annotations from the ex-

tended type of annotations and use these new labels with the

original labels to train our Bi-Layout model.

3. Bi-layout Annotations

We show some bi-layout annotation examples in both the

MatterportLayout [3] and ZInD [1] dataset.



(a) Original annotations (b) Relabeled annotations

Figure 2. Bi-layout annotations on the MatterportLayout [3] dataset. Blue and Green lines indicate original and relabeled annotations.

(a) Visible annotations (b) Raw annotations

Figure 3. Bi-layout annotations on the ZInD [1] dataset. Blue and Green lines indicate visible and raw annotations.

MatterportLayout We present some cases of our relabeled

annotations for the MatterportLayout [3] dataset. The orig-

inal annotations in Fig. 2(a) are from the original dataset

labels. Our relabeled annotations are shown in Fig. 2(b).

Based on our definition, we relabel the extended type of

annotation to the enclosed type of annotation.

ZInD We show some cases of two types of annotations offi-

cially provided by ZInD [1] dataset. The visible annotations

are shown in Fig. 3(a), and the raw annotations are shown

in Fig. 3(b), which corresponds to our extended type and

enclosed type, respectively.
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Figure 4. More qualitative results on the MatterportLayout [3] dataset. Blue and Green represent ground truth labels and predictions,

respectively. The boundaries of the room layout are on the left, and their bird’s-eye view projections are on the right. We show our

disambiguate results, which effectively address the ambiguity issue, while the SoTA methods struggle with the ambiguity, as highlighted in

dashed lines.
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Figure 5. More qualitative results on the ZInD [1] dataset. Blue and Green represent ground truth labels and predictions, respectively. The

boundaries of the room layout are on the left, and their bird’s-eye view projections are on the right. We show our disambiguate results, which

effectively address the ambiguity issue, while the SoTA methods struggle with the ambiguity, as highlighted in dashed lines.

4. Comparisons with SoTA

We show more qualitative results on the MatterportLay-

out [3] dataset in Fig. 4 and the ZInD [1] dataset in Fig. 5.

Our Bi-Layout model can effectively address the ambiguity

issue that the SoTA methods struggle with.

5. Ambiguity Detection

We show more qualitative results and several scenarios of

ambiguity detection in Fig. 6. In (a) and (b), we provide

more examples to demonstrate that our Bi-Layout model can

accurately detect ambiguous regions as the GT shows. In (c),

we offer a normal case where there is no ambiguous region

in the image, and our model can predict two identical predic-

tions. In (d), we show a special case where the GT does not

indicate the ambiguous regions as it should be (i.e., GT itself

has ambiguity), and our model can still successfully identify

them, showing the capability of our method to address the

inherent ambiguity issue in the dataset.

6. Ablation Studies

Global Context Embedding. To show the effectiveness of

our proposed Global Context Embedding and Shared Fea-

ture Guidance Module, we conduct the experiment using a

single global context embedding for our feature guidance

module and only generate a single prediction as the con-

ventional methods present (i.e., a single branch version of

our proposed method). We compare our single branch with



(a) (b)

(c) (d)

Figure 6. Qualitative results and different scenarios for ambiguity detection. Blue and Green on the top and bottom rows per image

represent ground truth and predicted confidence, respectively. Cyan and Magenta lines are our extended and enclosed type layout predictions.

In (a) and (b), our Bi-Layout model can accurately detect ambiguous regions as the GT shows. In (c), our model is able to predict two

identical predictions when there is no ambiguous region in the image. In (d), we show a special case where the GT does not indicate the

ambiguous regions as it should be (i.e., GT itself has ambiguity), and our model can still successfully identify them. Note that (d) is the

example we show in the main manuscript where the SoTA methods fail, which corroborates the ambiguity in this image.

Full set Subset

Method # Params 2DIoU(%) 3DIoU(%) 2DIoU(%) 3DIoU(%)

LGT-Net [2] 136 M 83.52 81.11 53.17 50.54

Our single branch 102 M 84.09 81.78 58.65 56.23

Table 1. Global Context Embedding for a single branch. We conduct the experiment on both the full set and subset of the MatterportLay-

out [3] dataset. We choose LGT-Net [2] as our baseline method to compare the effectiveness of our Global Context Embedding design.

LGT-Net [2] since the proposed components are built on top

of its architecture. In Table 1, our single branch outperforms

the baseline method on both the full set and subset of the

MatterportLayout [3] dataset, showing the effectiveness of

our Global Context Embedding design.

Model size comparison. As discussed in the main

manuscript, many model variations can let the SoTA method

predict two layouts. We additionally show the two-head ver-

sion of the baseline model, which shares the feature extractor

and transformer parts, and simply add the other prediction

head to generate the second type of layout. We compare all

the model variations in Table 2. Although the two-head ver-

sion model decreases the model parameters, the performance

is degraded significantly due to the naive model design. The

comparison with these model variations shows the effective-

ness and compactness of our Bi-Layout model.

Image feature dimension. To make the model more com-

pact, we compare different image feature dimensions: 1024,

512, and 256. We experiment on the full set and subset of the

MatterportLayout [3] dataset. In Table 3, the feature dimen-

sion of 1024 performs the best but it has the largest model

size. Our proposed Bi-Layout model with a feature dimen-

sion of 512 strikes a good balance between the performance

and model size. When it comes to the feature dimension of

256, the performance significantly drops, which means too

small feature dimensions are not feasible for our task.



Full set Subset

Method # Params 2DIoU(%) 3DIoU(%) 2DIoU(%) 3DIoU(%)

Two models 272 M 85.29 82.72 62.54 60.04

Two transformers 203 M 84.35 81.88 59.21 56.80

Two heads 136 M 84.06 81.51 57.97 55.47

Ours (c = 512) 102 M 85.10 82.57 62.81 59.97

Table 2. Model size and performance trade-off. We conduct the experiment on both the full set and subset of the MatterportLayout [3]

dataset and evaluate with our proposed disambiguate metric.

Full set Subset

Method # Params 2DIoU(%) 3DIoU(%) 2DIoU(%) 3DIoU(%)

Ours (c = 1024) 172 M 85.25 82.76 63.33 60.50

Ours (c = 512) 102 M 85.10 82.57 62.81 59.97

Ours (c = 256) 80 M 84.47 81.90 60.39 57.83

Table 3. Different image feature dimensions. We conduct the experiment on the full set and subset of the MatterportLayout [3] dataset and

evaluate with our proposed disambiguate metric.

Model 2D IoU (%) 3D IoU (%)

Train from scratch 85.10 82.57

Pretrain on ZInD-Simple 85.52 83.28

Pretrain on ZInD-All 85.81 83.52

Table 4. Pretraining effectiveness on MatterportLayout [3] with

our proposed disambiguate metric. The pretraining on different

types of ZInD [1] datasets indeed helps the model to disambiguate,

and the more data for the pretraining stage, the more performance

gain it has.

Pretrain with more data. MatterportLayout [3] has lim-

ited bi-layout samples, with only 15% of 1647 training im-

ages being re-annotated. However, most images in ZInD-

Simple [1] (24,882) and ZInD-All [1] (50,916) have both

raw and visible labels. Although ZInD also has ambiguity

issues, we believe pretraining on ZInD with extensive and

diverse bi-layouts can boost the model’s performance on Mat-

terportLayout. Therefore, we train one model from scratch

and fine-tune two models pre-trained on ZInD-Simple and

ZInD-All, respectively. The results in Table 4 demonstrate

that pretraining indeed aids the model in disambiguating,

with a more significant performance gain observed when

more data is used during the pretraining stage. This suggests

that with additional bi-layout annotations, our model has the

potential to more effectively address the ambiguity issue.

(b) Enclosed prediction on enclosed annotation

(a) Extended prediction on extended annotation

Figure 7. Failure case on the MatterportLayout [3] dataset. Blue

and Green represent ground truth labels and predictions, respec-

tively. The boundaries of the room layout are on the left, and their

bird’s eye view projections are on the right.

7. Limitations

Our Bi-Layout model also has limitations. As shown in

Fig. 7, we provide the predictions from our two branches,

which aim to fit extended and enclosed annotations. We

find that the main type of failure case comes from the large

opening region, and there is no obvious room boundary to

separate the different rooms. To address this difficult sce-



nario, we believe there is a need for more diverse bi-layout

training data to ensure our model can learn the corresponding

label properties.

8. Future Directions

We provide possible future research directions based on our

current proposed method.

Cross-dataset training. Our main manuscript shows that

pretraining on the large-scale ZInD [1] dataset can benefit the

model performance evaluated on the MatterportLayout [3]

dataset. This observation provides the possible direction for

cross-dataset training, which may further improve the model

performance.

Bi-Layout to multiple layouts. Our Bi-Layout model can

generate two types of predictions. Based on our network

design, it is possible to extend the number of predictions to

more than two predictions. In the future, once the dataset

provides multiple types of labels, multiple predictions can

be achieved by simply adding more global context embed-

dings and the corresponding prediction heads. Most impor-

tantly, due to our shared feature guidance module design,

those additional components for multiple predictions are

very lightweight, which can still maintain the compactness

of our model.
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