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Figure 1. Given occluded human image, non-reference methods, LOHC [41] and BrushNet [12], can generate plausible results but lack the
unique information of the person like special clothing and tattoo pattern (highlighted in Red box). Such information can be only acquired by
additional reference images. Given the reference image, MimicBrush [3] fails to find the corresponding parts between input and reference.
Our CompleteMe can preserve identical and fine-detail information from the reference image and generate a consistent result.

Abstract

Recent methods for human image completion can re-
construct plausible body shapes but often fail to pre-
serve unique details, such as specific clothing patterns
or distinctive accessories, without explicit reference im-
ages. Even state-of-the-art reference-based inpainting ap-
proaches struggle to accurately capture and integrate fine-
grained details from reference images. To address this lim-
itation, we propose CompleteMe, a novel reference-based
human image completion framework. CompleteMe employs
a dual U-Net architecture combined with a Region-focused
Attention (RFA) Block, which explicitly guides the model’s
attention toward relevant regions in reference images. This
approach effectively captures fine details and ensures accu-
rate semantic correspondence, significantly improving the
fidelity and consistency of completed images. Addition-
ally, we introduce a challenging benchmark specifically de-

signed for evaluating reference-based human image com-
pletion tasks. Extensive experiments demonstrate that our
proposed method achieves superior visual quality and se-
mantic consistency compared to existing techniques.

1. Introduction

Human image completion [30, 41–43] is an essential task
in computer vision, with a wide range of applications, in-
cluding photo editing [13, 28], virtual try-on [5, 7, 14, 20],
and animation [9, 34]. The ability to accurately reconstruct
missing parts of human images has significant implications
for enhancing user experience in these areas. Traditional
inpainting methods [37, 38] have made strides in generat-
ing plausible image completions, but they often fall short in
maintaining consistency of complex features like clothing,
pose, and human anatomy. These challenges become even
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more pronounced when dealing with large or irregular miss-
ing regions, which require a comprehensive understanding
of both the local and global context of an image.

Amodal completion methods [22, 33, 39] have recently
garnered attention for their ability to infer occluded parts of
an object beyond visible regions. These approaches aim to
reconstruct the entirety of an object even when portions are
entirely hidden, relying on learned priors to predict missing
information. However, they primarily focus on reconstruct-
ing general object shapes obscured by occlusions and often
fall short in complex scenarios that involve varied human
poses or intricate details, such as unique clothing patterns
or distinctive features like tattoos. Without explicit refer-
ence information, these methods struggle to generate accu-
rate completions that capture individual characteristics, as
people often seek to faithfully restore specific, original de-
tails. Amodal completion methods, however, are currently
unable to achieve this level of precise restoration.

Reference-based inpainting [1, 3, 4, 26, 27, 35] provides
a promising solution by utilizing additional reference im-
ages that share similar attributes, offering valuable infor-
mation for reconstructing missing regions. These methods
leverage visual cues from reference images, such as cloth-
ing details, textures, or human poses, to fill in missing re-
gions more accurately and consistently. Despite these ad-
vancements, these methods mainly focus on object-level in-
sertion or completion, and challenges still remain in terms
of effectively capturing fine-grained details, particularly in
cases involving intricate clothing patterns and unique parts
of the person, where explicit reference information is cru-
cial for generating identical results.

To address the above issue, we propose CompleteMe, a
reference-guided human image completion framework that
leverages reference images to guide the completion process.
Our model is based on a dual U-Net structure, consisting
of the Reference U-Net and the Complete U-Net, which
separately handle reference information and completing for
the occluded input. To improve correspondence, we di-
vide different parts of human appearance (e.g., hair, face,
clothes, shoes) into separate reference images for the Ref-
erence U-Net. These reference features are then integrated
into the Complete U-Net via our newly designed Region-
focused Attention (RFA) Block. The RFA Block explicitly
guides attention toward relevant reference regions based on
reference masks, effectively establishing precise correspon-
dences and improving the model’s ability to produce more
realistic and semantically accurate completions, particularly
for challenging cases involving complex clothing patterns,
body patterns, or unique accessories. As shown in Fig. 1,
CompleteMe can generate more fine-detail results based on
the information provided by the reference image, outper-
forming other methods. To comprehensively evaluate the
performance of various methods on reference-based human

completion tasks, we construct a challenging benchmark
featuring significant body pose differences and varying sce-
narios between the occluded input and the reference image.
This benchmark tests the model’s ability to generate consis-
tent information and establish proper correspondences. Our
contributions are summarized as follows:
• We propose CompleteMe, a novel reference-based human

image completion model employing a dual U-Net archi-
tecture enhanced by our Region-focused Attention Block,
explicitly designed to preserve fine details and identity
consistency with enhanced correspondence.

• We construct a challenging benchmark dataset with sig-
nificant pose differences and varying scenarios to system-
atically evaluate the model’s ability to find proper corre-
spondences and maintain identical and consistent infor-
mation from the reference image.

• We conduct comprehensive experiments, including a
large user study, to demonstrate the best performance of
the proposed method both qualitatively and quantitatively.

2. Related Work
Image Completion. Recent advancements in object image
completion have introduced various methods to address the
challenges in reconstructing missing or occluded regions.
Xiong et al. [32] develop a foreground-aware image in-
painting method incorporating explicit contour guidance to
enhance object reconstruction. SmartBrush [31] combines
text and shape guidance with a diffusion model to fill miss-
ing regions with detailed object reconstructions. Brush-
Net [12] introduces a plug-and-play dual-branch model to
embed pixel-level masked image features into any pre-
trained text-to-image diffusion model to generate inpainting
outcomes. For human-centric image completion, FiNet [40]
propose Fashion Inpainting Networks, which reconstruct
missing clothing parts in fashion portrait images using pars-
ing maps as priors. Wu et al. [30] extend the approach
with a two-stage deep learning framework for portrait im-
age completion, utilizing a human parsing network to ex-
tract the body structure before filling in unknown regions.
Zhao et al. [42] propose a prior-based human completion
method, incorporating structural and texture correlation pri-
ors to recover realistic human forms. LOHC [41] introduces
a two-stage coarse-to-fine method and leverages human seg-
mentation maps as a prior, and completes the image and
segmentation prior simultaneously.
Reference-based Inpainting. Reference-based image in-
painting has made significant improvements in recent years,
focusing on leveraging external references to improve im-
age completion tasks with enhanced realism and semantic
accuracy. TransFill [44] introduces a method that aligns
source and target images using multiple homography in-
formed by depth levels. Paint-by-Example [35] leverages
diffusion models for exemplar-guided editing, integrating
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Figure 2. CompleteMe Pipeline. Our proposed CompleteMe utilizes a dual U-Net framework composed of a Reference U-Net (Uref ) and
a Complete U-Net (Ucomp). Given an input image (Iinput) with masked regions, we first encode the input image to latent feature finput.
The Reference U-Net then extracts detailed visual features (f0

ref , f
1
ref , . . . , f

n
ref ) from multiple reference images (Iref ), which consist of

different human body parts. Along with global semantic features (fCLIP) extracted by CLIP, the reference features are processed within
our novel Region-focused Attention (RFA) Block embedded in the Complete U-Net. These reference features are then explicitly masked
according to reference masks, producing masked reference features (f ′0

ref , f
′1
ref , . . . , f

′n
ref ). This explicit masking and concatenation

strategy enables the model to precisely zoom in and focus on relevant human regions, establishing accurate and fine-grained correspon-
dences through the Region-focused Attention mechanism. Finally, decoupled cross-attention integrates these refined local features with the
global semantic CLIP features (fCLIP), resulting in a detailed and semantically coherent completion.

example patches into target images. ObjectStitch [26] uses
conditional diffusion models and introduces a content adap-
tor to maintain categorical semantics and object appearance.
AnyDoor [4] introduces a zero-shot framework that tele-
ports target objects into new scenes at user-specified loca-
tions and orientations. IMPRINT [27] proposes a diffusion
model trained with a two-stage learning framework that de-
couples learning of identity preservation from compositing.
LeftRefill [1] presents a strategy that stitches reference and
target views as a unified input to a text-to-image diffusion
model. MimicBrush [3] offers an approach to locally edit
the source region with reference images by training dual dif-
fusion U-Nets in a self-supervised manner with video data.

These methods illustrate the progression of reference-
based inpainting, moving from traditional alignment tech-
niques to advanced diffusion-based models prioritizing
identity preservation, contextual consistency, and zero-shot
learning capabilities. However, human image completion
presents a more complex challenge, as current methods pri-
marily focus on object-level completion and struggle to es-
tablish accurate correspondences between the source and
reference when conditions differ significantly.

3. Method

3.1. Overall Pipeline

Our proposed CompleteMe utilizes a dual U-Net architec-
ture comprising a Reference U-Net (Uref ) and a Com-
plete U-Net (Ucomp), as illustrated in Fig. 2, explicitly tai-
lored for reference-based human image completion. Given
an input source image (Iinput) with masked regions, our
masking strategy applies random grid masking (50% prob-
ability) 1 to 30 times and employs human body shape
masks (50% probability) to ensure complexity and real-
ism. The Reference U-Net (Uref ) first extracts detailed
spatial features (f0

ref , f
1
ref , . . . , f

n
ref ) from multiple ref-

erence images (Iref ), which consist of different human
body parts. The reference features are then processed
within our novel Region-focused Attention (RFA) Block,
embedded in the Complete U-Net (Ucomp). These ex-
tracted reference features are explicitly masked using cor-
responding reference masks, yielding masked reference
features (f ′0

ref , f
′1
ref , . . . , f

′n
ref ). The RFA block ex-

plicitly guides the input feature finput with attention to-
ward relevant human regions inside masked reference fea-
tures (f ′i

ref ). Along with the global semantic features

3



(fCLIP) from CLIP [23] encoder, the RFA Block enables
the model to precisely identify and establish accurate corre-
spondences, significantly enhancing detail preservation and
semantic coherence. During inference, our model is flexi-
ble, operating effectively even with a single reference im-
age and optionally incorporating textual prompts, enabling
practical and versatile human image completion.

3.2. Reference Feature Encoding
In reference-based image inpainting tasks, previous ap-
proaches [4, 26, 27, 35] typically utilize semantic-level en-
coders such as CLIP [23] or DINOv2 [21] to extract global
features from reference images. However, these methods
often lose crucial spatial information, resulting in limited
preservation of fine-grained appearance details. Motivated
by recent successes in image and video generation condi-
tioned on reference images [3, 9, 10, 34], we propose a
specialized Reference U-Net encoder designed for detailed
identity preservation across multiple reference images.

Our Reference U-Net (Uref ) is initialized from pre-
trained Stable Diffusion 1.5 [24] weights but operates ex-
plicitly without the diffusion-based noise step (at timestep
zero), directly encoding reference images (Iref ) into latent
visual features (f0

ref , f
1
ref , . . . , f

n
ref ). Each reference im-

age, corresponding to distinct human appearance attributes
(e.g., upper body, lower body, shoes), is first transformed
into latent representations and then sequentially processed
by the Reference U-Net. This sequential encoding strat-
egy ensures flexibility and robustness, effectively manag-
ing varying numbers and types of reference images while
preserving detailed appearance information. Additionally,
global semantic features (fCLIP) are extracted from each
reference image using the CLIP [23] image encoder, sup-
plementing the spatially-detailed latent features with global
semantic context. These combined reference and seman-
tic CLIP features are cached before feeding to our Region-
focused Attention (RFA) Block, facilitating efficient and
detail-preserving encoding process.

3.3. Completion Process
Complete U-Net. Our Complete U-Net (Ucomp), initialized
from pretrained Stable Diffusion 1.5 [24] inpainting model,
receives as input a source image (Iinput) with masked re-
gions represented in the latent space, along with cached
latent reference features (f0

ref , f
1
ref , . . . , f

n
ref ) and global

CLIP features (fCLIP), as shown in Fig. 2. The Complete U-
Net then processes a concatenation of these masked refer-
ence features with the input feature (finput) inside Region-
focused Attention Block, providing detailed context for the
completion task.
Region-focused Attention Block. To effectively integrate
detailed local information from reference images, we intro-
duce the Region-focused Attention (RFA) Block, as illus-

trated in Fig. 2. Given the encoded latent reference features
(f i

ref ), we explicitly mask irrelevant regions using the cor-
responding reference masks, generating masked reference
features (f ′i

ref ). These masked reference features (f ′i
ref )

are then concatenated with latent input features (finput) ex-
tracted from the input image to form the concatenated fea-
ture (fconcat). Within the RFA block, we apply region-
focused attention to the concatenated features as follows:

Region-focused Attention(Q,K, V ) = Softmax
(

QK⊤
√
d

)
V, (1)

where the queries (Q), keys (K), and values (V ) are de-
fined as: Q = finput, K,V = fconcat. This region-
focused attention allows the model to explicitly identify ac-
curate and fine-grained spatial correspondences between the
masked source regions and relevant masked reference re-
gions. After this detailed correspondence establishment via
region-focused attention, we utilize the decoupled cross-
attention mechanism proposed by IP-Adapter [36] to fuse
the refined, detail-focused local features with global seman-
tic features (fCLIP). Specifically, we perform two separate
cross-attention operations—one using the refined local fea-
tures, and the other using the global CLIP features—then
sum their outputs to form enriched, semantically consistent
feature maps. This explicit integration of visual and textual
information results in more detailed, coherent, and contex-
tually accurate completed outcomes.

3.4. Evaluation Benchmark
Since no suitable dataset evaluates the reference-based hu-
man image completion task, we construct our benchmark to
systematically evaluate the performance of different meth-
ods. Our main target is to establish the scenario in which
reference images are necessary for completing the unique
information. We establish the benchmark to meet the fol-
lowing criteria: 1) the same person in the same clothing, 2)
a significantly different pose, 3) unique patterns like spe-
cial clothing, accessories, or tattoos, and 4) different back-
ground conditions. To construct the benchmark, we first se-
lect image pairs from the Wpose dataset in UniHuman [16],
which contains a wide variety of poses, allowing us to test
the model’s ability to find the proper correspondence. We
manually draw the source mask to indicate the inpainting
area. Finally, we obtain 417 image groups, each consist-
ing of a source image, inpainting area, and reference image,
please refer to supplementary material for more benchmark
examples. Additionally, we use LLaVA [17, 18] to generate
text prompts describing the source image. For evaluation
metrics, we use CLIP [23] to calculate text-to-image and
image-to-image similarity, DINO [2] to calculate similarity
scores, and the DreamSim [6] metric to better evaluate the
generated results. Aside from these metrics, we also use
PSNR [8], SSIM [29], and LPIPS [40] as our evaluation
metrics for masked regions.
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Table 1. Quantitative Comparison on Our Benchmark (Sec. 3.4). “CLIP-I” measures the similarity between images. “CLIP-T”
measures the similarity between text and image. Red and blue indicate the best and second-best, respectively.

Method CLIP-I ↑ CLIP-T ↑ DINO ↑ DreamSim [6] ↓ LPIPS ↓ PSNR ↑ SSIM ↑

LOHC [41] 96.03 29.46 82.52 0.0732 0.0709 28.4884 0.9264
BrushNet [12] 95.90 30.69 95.08 0.0576 0.0600 28.5764 0.9224

Paint-by-Example [35] 95.04 29.79 94.98 0.0611 0.0601 28.6441 0.9222
AnyDoor [4] 89.65 28.14 88.80 0.1454 0.0812 28.1807 0.9089
LeftRefill [1] 96.33 29.74 95.12 0.0574 0.0598 28.8657 0.9283
MimicBrush [3] 96.98 29.48 94.37 0.0651 0.0694 28.3598 0.9174

CompleteMe (Ours) 97.18 29.83 96.29 0.0419 0.0588 28.7020 0.9239

Masked Input Reference Image LOHC BrushNet w/ Prompt CompleteMe (Ours)

Figure 3. Qualitative Comparison with Non-reference Meth-
ods. We compare CompleteMe with non-reference methods,
LOHC[41] and BrushNet [12]. Given masked inputs, these non-
reference methods generate plausible content for the masked re-
gions using image priors or text prompts. However, as indicated in
the Red box, they cannot reproduce specific details such as tattoos
or unique clothing patterns, as they lack reference images to guide
the reconstruction of identical information.

4. Experiments

4.1. Experimental Setting

Implementation Details. In this work, we employ the Ref-
erence U-Net and the Complete U-Net, initialized with pre-
trained weights from Stable Diffusion-1.5 [24] and Stable
Diffusion-1.5 inpainting model. Our image encoder uses
CLIP [23] Vision Model, along with projection layers. For
training, we use Adam [15] optimizer and set an initial
learning rate of 2×10−5 with a total batch size of 64. Train-
ing is performed on 8 NVIDIA A100 GPUs for 30,000 itera-
tions. We apply mean square error (MSE) loss as our super-
vision. To enhance the robustness of the model, we employ
a random drop strategy, where all reference image features
are randomly dropped with a probability of 0.2. This helps
the model learn to handle cases with partial information
from reference images. Additionally, to increase the flexi-
bility of the completion process, each reference condition is

randomly dropped with a probability of 0.2, allowing image
completion to be conditioned on various reference images.
During inference, we adopt the DDIM sampler [25] with 50
steps and set the guidance scale to 7.5 to improve output
quality and identity.
Training Dataset. To train our CompleteMe model, we
modify a multi-modal human dataset based on [10], which
is constructed from the DeepFashion-MultiModal [11, 19]
dataset. To meet our requirements, we rebuild the train-
ing pairs by using occluded images with multiple reference
images that capture various aspects of human appearance
along with their short textual labels. Each sample in our
training data includes six appearance types: upper body
clothes, lower body clothes, whole body clothes, hair or
headwear, face, and shoes. For the masking strategy, we ap-
ply 50% random grid masking between 1 to 30 times, while
for the other 50%, we use a human body shape mask to in-
crease masking complexity. After the construction pipeline,
we obtained 40,000 image pairs for training.

4.2. Comparison with Other Methods
In this section, we compare our CompleteMe with other
approaches capable of performing similar functions in the
reference-based human image completion task. Among
non-reference methods, we select LOHC [41], the state-
of-the-art in non-reference human image completion, and
BrushNet [12], a leading model for image inpainting with
text prompts. For reference-based methods, we include
Paint-by-Example [35], AnyDoor [4], LeftRefill [1], and
MimicBrush [3] for a comprehensive comparison. We
also provide additional inputs where applicable for previ-
ous methods. For instance, we include extra prompts for
BrushNet [12] and supply reference region masks for Paint-
by-Example [35] and AnyDoor [4].
Quantitative Comparison. To assess the effectiveness
of CompleteMe, we perform a quantitative comparison
with other state-of-the-art methods for human image com-
pletion. We evaluate both non-reference and reference-
based inpainting approaches using several metrics: CLIP-
I [23] (image-to-image), CLIP-T [23] (text-to-image),
DINO [2], DreamSim [6], PSNR [8], SSIM [29], and
LPIPS [40]. As shown in Table 1, CompleteMe demon-
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Masked Input Reference Image Paint-by-Example AnyDoor LeftRefill MimicBrush CompleteMe (Ours)

Figure 4. Qualitative Comparison with Reference-based Methods. Our CompleteMe can generate more realistic and preserve identical
information from the reference image. Please refer to the Red box region for a more detailed comparison.

strates strong performance across various perceptual met-
rics, outperforming other methods in CLIP-I, DINO,
DreamSim, and LPIPS, which reflect our ability to main-
tain semantic alignment and appearance fidelity with the
reference image. In terms of image quality metrics, Com-
pleteMe achieves competitive PSNR and SSIM scores,
demonstrating its high-fidelity reconstructions. These quan-
titative results illustrate that CompleteMe achieves better
performance across semantic similarity, structural fidelity,
and perceptual quality, positioning it as a robust solution
for reference-based human image completion.
Qualitative Comparison. For qualitative comparison, we
first compare our CompleteMe with non-reference meth-
ods, LOHC [41] and BrushNet [12], as shown in Fig. 1 and
Fig. 3. Given masked inputs, these non-reference methods
generate plausible content for the masked regions by lever-
aging image priors or additional text prompts. However, as
highlighted in the red box, they are unable to replicate spe-
cific details, such as tattoos or unique clothing patterns, due
to the absence of reference images to guide the reconstruc-
tion of identical features.

As shown in Fig. 4, we compare CompleteMe with

reference-based methods: Paint-by-Example [35], Any-
Door [4], LeftRefill [1], and MimicBrush [3]. For the set-
ting of comparison, we use only one reference image and
text prompt for our method. Given a masked human image
and a reference image, other methods can generate plausi-
ble content but often fail to preserve contextual information
from the reference accurately. In some cases, they gen-
erate irrelevant content or incorrectly map corresponding
parts from the reference image. In contrast, CompleteMe ef-
fectively completes the masked region by accurately pre-
serving identical information and correctly mapping corre-
sponding parts of the human body from the reference image.

User Study. Recognizing that metrics alone may not fully
capture human preferences, we conducted a user study, as
shown in Table 2. We asked 15 annotators to evaluate
the generated results from various models on our bench-
mark (described in Sec. 3.4) and acquire 2,895 groups
of data points. We construct the “one-to-one” evaluation
pair between CompleteMe and other four methods (Paint-
by-Example [35], AnyDoor [4], LeftRefill [1], and Mim-
icBrush [3]) with masked input and reference image. Each
group sample is assessed based on two primary criteria:
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Masked Input Reference Image CLIP U-Net w/o RFADINOv2 U-Net (Ours)

Figure 5. Qualitative Comparison on Different Reference Image Encoder. We conduct the ablation study for different encoders to
extract the feature from reference images. CLIP [23] and DINOv2 [21] can find the correspondence between masked input and the
reference image, but they can not preserve the detailed information compared to the U-Net encoder. For the effectiveness of our Region-
focused Attention (RFA), this design further helps preserve the identical information. Please zoom in for the detail inside the Red box.

Table 2. User Study on Our Benchmark. We conduct a user
study on our proposed benchmark (see Sec. 3.4). “Quality” and
“Identity” measure the completion quality and preservation of
identical information from the reference image. We report the one-
to-one comparison between these methods and CompleteMe. For
“a/b”, a is the percentage where the compared method is consid-
ered better than CompleteMe, and b is the percentage where Com-
pleteMe is considered better than the compared method.

Evaluation Quality Identity

Method CompleteMe

Paint-by-Example [35] 6.12%/93.88% 3.48%/96.52%
AnyDoor [4] 0.55%/99.45% 1.13%/98.87%
LeftRefill [1] 14.97%/85.03% 4.58%/95.42%
MimicBrush [3] 5.14%/94.86% 6.05%/93.95%

Table 3. Ablation on Different Masking Ratios. We conduct
experiments with different ratios between human shape and ran-
dom mask (0% to 100%) and evaluate performance using CLIP-I,
DINO, and DreamSim.

Random Mask Ratio 0 % 25 % 50 % 75 % 100 %

CLIP-I ↑ 97.09 97.02 97.18 97.07 96.78
DINO ↑ 96.22 96.26 96.29 96.10 95.60
DreamSim ↓ 0.0426 0.0419 0.0419 0.0434 0.0495

“Quality” and “Identity”. The “Quality” criterion examines
whether the completed regions contain high-quality fine de-
tails, while the “Identity” criterion evaluates the model’s
ability to preserve the identity of the reference region. As
shown in Fig. 4, the annotators will judge the results gen-
erated by these reference-based methods and report their
preference based on the two criteria. Table 2 shows the sig-
nificant preference on CompleteMe. We will provide more
visual comparisons in the supplementary material.

4.3. Ablation study
Different Masking Ratios. We conducted an ablation
study to analyze the impact of varying masking ratios be-
tween human shape and random mask on our model’s

Table 4. Ablation on Different Reference Image Encoder and
Effectiveness of Region-focused Attention. We conduct an abla-
tion study using various image encoders to process reference im-
ages. The U-Net encoder consistently outperforms both CLIP [23]
and DINOv2 [21] encoders across all perceptual metrics. We fur-
ther compare the effectiveness of Region-focused Attention Block,
which demonstrate the best performance among all comparisons.

Method Region-focused CLIP-I ↑ DINO ↑ DreamSim [6] ↓
CLIP Encoder 96.96 96.06 0.0457
DINOv2 Encoder 96.20 94.30 0.0639

U-Net 97.05 96.17 0.0437
Ours (U-Net) ✓ 97.18 96.29 0.0419

performance. Specifically, we experimented with random
mask ratios ranging from 0% to 100% and evaluated the
results using three metrics: CLIP-I, DINO, and Dream-
Sim. As shown in Table 3, our model achieves the best
overall performance at a 50% random mask ratio, obtaining
the highest CLIP-I (97.18) and DINO (96.29) scores and
the lowest DreamSim (0.0419) score. This indicates that
a balanced masking ratio of 50% effectively enhances our
model’s robustness and ability to handle diverse occlusions,
enabling visual and semantic consistency.
Different Reference Image Encoder. Several recent meth-
ods [3, 9, 10, 34] have shown that an additional U-Net can
effectively capture fine-grained details from reference im-
ages. Paint-by-Example [35] uses a CLIP [23] encoder to
extract features from reference images, while AnyDoor [4]
employs DINOv2 [21] for the same purpose. In our study,
we investigate whether these encoders can effectively learn
feature correspondences and alignment across multiple ref-
erence images. To do so, we replace our reference U-Net
with CLIP and DINOv2 image encoders, using their token
features in the cross-attention layer of the Complete U-Net.

As shown in Fig. 5, both CLIP and DINOv2 successfully
identify relevant reference regions, but the U-Net demon-
strates clear advantages in preserving fine details. Addi-
tionally, quantitative results in Table 4 show that U-Net out-
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Table 5. Quantitative Comparison on Our Benchmark for Ablation Study on Different Training Strategies. “Train Ref U-Net”
indicates whether to train the Reference U-Net. “Prompt” means using the text prompt as additional input for the Complete U-Net.
“Reference Mask” stands for whether using reference masks for the Region-focused Attention Block.

Exp. Train Ref U-Net Prompt Reference Mask CLIP-I ↑ DINO ↑ DreamSim [6] ↓ LPIPS ↓

(a) Freeze U-Net 96.02 95.54 0.0513 0.0596
(b) Freeze U-Net+Prompt ✓ 96.13 95.48 0.0521 0.0598
(c) Freeze U-Net+Prompt+Ref Mask ✓ ✓ 97.02 96.08 0.0444 0.0600

CompleteMe (Ours) ✓ ✓ ✓ 97.18 96.29 0.0419 0.0588

Masked Input Reference Image Exp. (a) CompleteMe (Ours)Exp. (b) Exp. (c)

Figure 6. Qualitative Comparison on Different Training Strategies. The experimental index follows configurations in Table 5. The Red
box highlights the finely detailed regions where different models exhibit varying performance based on distinct training strategies.

performs CLIP and DINOv2 on all evaluation metrics. The
Reference U-Net encoder provides multi-level representa-
tions at higher resolutions, and its feature space aligns natu-
rally with the Complete U-Net, leading to improved results
as a reference feature extractor.
Effectiveness of Region-focused Attention. We conducted
an ablation study to investigate the effectiveness of our pro-
posed Region-focused Attention (RFA) mechanism. As
shown in Table 4, integrating our proposed RFA mecha-
nism with the U-Net encoder further enhances performance,
yielding the highest CLIP-I (97.18) and DINO (96.29)
scores and the lowest DreamSim (0.0419). This clearly
demonstrates that the RFA effectively captures detailed cor-
respondences and enhances semantic coherence by explic-
itly focusing attention on relevant masked regions.
Different Training Strategies. We conduct the ablation
study to verify the training strategy and different training
input sources. We validate the ablation study on the follow-
ing three aspects: 1) whether to train the Reference U-Net,
2) text prompt input for Complete U-Net, and 3) reference
mask for the Region-focused Attention Block.

Table 5 presents the results of our ablation study, demon-
strating that CompleteMe achieves the highest evaluation
scores across all metrics, showing its robustness and ef-
fectiveness in the reference-based human image completion
task. To further illustrate the impact of our design choices,

we provide visual comparisons in Fig.6, showing how each
variation affects the quality of generated images. These vi-
suals highlight the strengths of CompleteMe in preserving
fine details, maintaining identity consistency, and achieving
high-quality completions, underscoring the contributions of
each component in our model architecture.

5. Conclusion
In this paper, we propose CompleteMe, a novel reference-
based human image completion framework explicitly
designed to reconstruct missing regions in human images
with high fidelity, detail preservation, and identity consis-
tency. Our approach employs a dual U-Net architecture
consisting of a Reference U-Net and a Complete U-Net
integrated with our Region-focused Attention (RFA)
Block, which explicitly guides attention toward relevant
regions in reference images, thus significantly enhancing
spatial correspondence and detailed appearance during
completion. Extensive experiments on our benchmark
demonstrate that CompleteMe outperforms state-of-the-art
methods, both reference-based and non-reference-based,
in terms of quantitative metrics, qualitative results
and user studies. Particularly in challenging scenarios
involving complex poses, intricate clothing patterns,
and distinctive accessories, our model consistently
achieves superior visual fidelity and semantic coherence.
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