

Live Room Merger: A Real-Time Augmented Reality
System for Merging Two Room Scenes

Chu-I Chao, Chien-Min Wang, Hsuan-Chi Kuo, Liang-Chi Tseng,

Shih-Kai Lin, Yu-Ju Tsai, Ching-Chi Lin, and Da-Fang Chang
Institute of Information Science, Academia Sinica, Taipei, Taiwan

ABSTRACT
A real-time augmented reality system is built to replace the
background of the user’s room (the ‘observer room’ or ‘local
room’) with a 360-degree live video of another room (the ‘remote
room’). The user can see the merged room captured by an RGB-
D camera mounted on the VR headset. A 360-degree image of the
remote room is converted into a simple box-like room structure
model in real time. The model is loaded into Unity and replaces
the background of the observer room, with the result then
displayed in a VR head-mount device.

CCS Concepts
• Computing methodologies---Computer graphics---Graphics
systems and interfaces---Mixed / augmented reality
• Computing methodologies---Artificial intelligence---
Computer vision---Computer vision problems---
Reconstruction
• Computing methodologies---Artificial intelligence---
Computer vision---Computer vision tasks---Scene
understanding

Keywords
Augmented reality, real time, reconstruction, 3D modeling,
panorama, indoor structure

Author Contact Information:
kmchao33@gmail.com, cmwang@iis.sinica.edu.tw,
hsuanchikuo@gmail.com, lctseng@cs.nctu.edu.tw,
r05922043@ntu.edu.tw, b02902052@ntu.edu.tw,
deathsimon@gmail.com, b02901126@ntu.edu.tw

1. INTRODUCTION
Augmented and virtual reality technologies (AR and VR) can be
used to merge real and virtual worlds. Commercial VR devices,
including Oculus Rift, HTC Vive and PS VR, synthesize the
user's head or even body motion in VR applications. Intel’s
Project Alloy immerses users into virtual worlds. This paper seeks
to merge an entire 360-degree indoor virtual scene with another,
real world, indoor scene to create a more immersive distance
learning or web conferencing experience by merging remote
classrooms, or conference rooms.

A real time system is built to merge two indoor room scenes. As
shown in Fig. 1, we reconstruct the remote room scene using a
360-degree camera and substitute it for the background of the
local room scene. The user can then see the merged room through
an RGB-D camera mounted on an HMD.

Panoramas have been widely used in multimedia applications to
outline scenes. It has been a standard technique to capture and
display different kinds of omni-directional information ([5], [6]),

Figure 2: the data flow of Live Room Merger system.

Figure 1: the overview of Live Room Merger system:
Partial local room scene (given by the dotted lines) is replaced
by the remote room scene.

Publication rights licensed to ACM. ACM acknowledges that
this contribution was authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the
Government retains a non-exclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for
Government purposes only.

VRIC '17, March 22–24, 2017, Laval, France
© 2017 Copyright is held by the owner/author(s). Publication
rights licensed to ACM.
ACM ISBN 978-1-4503-4858-4/17/03…$15.00
http://dx.doi.org/10.1145/3110292.3110301

leading to a large panoramic image utilization in a variety of
circumstances. For example, lots of research has been done on
understanding indoor scenes and reconstructing indoor floor
plans from panoramas. Cabral and Furukawa [1] took multiple
indoor panoramas as inputs and used structural cues from
individual images for floor plan reconstruction. The PanoContext
method [2] recovers the full room layout from a single panorama
image, assuming a box-shaped room. Walls and floors are used as
contextual information to recognize object categories and
positions. Recent work by Yang and Zhang [3] recovered 3D
room shapes from a single panorama using lines and superpixels
in a constraint graph. Farin et al. [4] used a semi-automatic
reconstruction process in which the user marks the room corners
in the panoramic images to create a coarse reconstruction of the
indoor environment. These studies all focus on complex floor
plan and indoor environment reconstruction problems. The
proposed system focuses on a real-time reconstruction method for
simple room structures.

Our semi-automatic remote room structure is modeled on a
spherical panorama, and aims to reconstruct the structure of a
box- or cuboid-shaped room in real time. The user is required to
specify the room’s 8 corners. To enhance intuitiveness, cube
mapping is used rather than directly converting a 360-degree
spherical image into a cuboid-like room structure model. One
constraint of the modeling method is that the input panorama
should be taken with the camera directly facing any one of room
walls.

Our system architecture consists of two main parts, as shown in
Fig. 2. One is the semi-automatic remote room structure
reconstruction from a spherical panorama in real time on the
remote room side, and the other is the background replacement
and display on the local room side, using the room structure
model from the remote side, an RGB-D camera and an HMD.

To capture a live 360-degree video of the remote room, we use a
Ricoh Theta S, a commercial 360-degree dual-fisheye camera
which automatically stitches two fisheye images into a 360-
degree spherical image in real time. The output 360-degree
spherical live streaming video has a resolution of 1280x640 pixels
at a frame rate of 15 fps. To generate the user’s viewpoint on the
local room side, we use a commercial RGB-D camera called a
ZED Stereo Camera, mounted on an Oculus Rift DK2 headset.
The ZED Stereo Camera's tracking and depth detection function
also provides more degrees of freedom of head motion and
retrieves the surrounding foreground. The desktop computer for
the remote room structure reconstruction uses a 3.7Ghz Intel
Xeon E5 CPU with a GTX 1080 graphics card and 64GB of
memory, while the computer on the local room side uses a 3.5Ghz
Intel Core i7 with a GTX 970 graphics card and 16GB of memory.
Communication between these two computers is established via
a 1Gbits wired network.

The software implementation on the local room side is based on
Microsoft Windows 7 and Unity3D. The built-in 3D world and
the Oculus Rift Plugin in Unity 3D facilitate system construction
and scene display in the headset. The remainder of this paper is
structured as follows. Section 2 introduces the proposed real-time

box-like room structure modeling from a spherical panorama.
Section 3 provides a detailed description of the local room side.
Section 4 shows the experimental results and Section 5 concludes
the paper and provides directions for future work.

2. SEMI-AUTOMATIC BOX-LIKE
ROOM STRUCTURE MODELING FROM
A SPHERICAL PANORAMA
The box-like room structure modeling method from a spherical
panorama references the position of the room’s corners as given
by the user via cube mapping. Depending on its simplicity, it can
be implemented in real-time with GPU acceleration.

The process consists of two main stages: mapping a 360-degree
image onto a cube, and then mapping the cube onto a cuboid with
8 vertices. The first stage is done with GPU and the second uses
only CPU.

2.1 Mapping from A Spherical Panorama
to A Cube Map
Instead of directly converting a 360-degree spherical image into
a cuboid map, this stage helps us solve the problem more
intuitively by converting the curvy edges of a box-like room to
either horizontal or vertical lines. This is easily accomplished by
rewriting the C++ code in an open source project on Github1 using
CUDA.

2.2 Mapping from A Cube Map to A
Cuboid Map Given 8 Vertices of Cuboid
We divide the cube into eight equal mini-cubes, and then map
each mini-cube to a mini-cuboid. We then merge the mini-
cuboids to obtain a simple room model.

The first and the third steps are trivial, thus we focus on the
mapping from a mini-cube to a mini-cuboid. This involves two

r

Figure 3: (a) 2D mapping between a mini-cube and a mini-
cuboid. (b) 3D mapping between a mini-cube and a mini-
cuboid.

(a)

(b)

1https://github.com/rlk/envtools

r = (t,t,t)

steps: finding the ratio of the mini-cuboid’s length, width, height
and filling pixels into the mini-cuboid.

Problem Definition As shown in Fig. 3a, given three images A,
B, C of a mini-cube, the length of the mini-cube t and a cuboid's
vertex p, find the ratio of the length, width, height of the
corresponding mini-cuboid and fill the pixels into mini-cuboid
images A’, B’, C’.
Observation As described in Fig. 3a, let u, v, w respectively be
the length, width and height of the mini-cuboid and p = (a, b) in
plane A. In addition, we can suppose that v>=u>=w anytime by
rotating the mini-cuboid to ensure that p is in the plane A and a >=
b.

Observe that part 1 corresponds to image A’. Thus, we can assign
u=a, w=b. In addition, p and p’ are actually the same point in the
xyz coordinate, so we get v = t and u:v:w = a:t:b. By obtaining
the coordinate of q and q’ in the xyz coordinate, we can
correspond each part of the mini-cube with that of the mini-
cuboid and further fill the pixels.

Proof As shown in Fig. 3b, let O=(0, 0, 0), q=(t, t, k) and q’=(u,
l, w)=(a, l, b). Notice that Oq’q forms a line in xyz coordinate, so
we have t/a = t/u = t/l = k/w = k/b => l = a, k = bt/a. Furthermore,
because q’ and q’’ are actually the same point in the xyz
coordinate, the length of p’q’’ is equal to the length of p’q’. On
the other hand, Or’r also forms a line in the xyz coordinate. So
we have r’=(w, w, w)=(b, b, b). Now we obtain the
correspondence between each part of the mini-cube and the mini-
cuboid. This leaves the transformation. In mapping a 360
spherical image to a cube, we actually map the whole box-shaped
room. Thus we perform the inverse operation. In mapping the
whole box-shaped room to the cube, we perform a projective
transformation from part n’ in the mini-cuboid to part n in the
mini-cube for n=1~7. The inverse operation of a projective
transformation is also a projective transformation. Therefore, to
fill pixels into the mini-cuboid, we perform a projective
transformation from part n in the mini-cube to part n’ in the mini-
cuboid for n=1~7 given the coordinate of p, p’, q, q’, q’’, r, r’.

3. LOCAL ROOM SIDE DETAIL
In this part, we describe the use of a VR headset and an RGB-D
camera to construct a merged room scene for display with GTX
970 graphics card acceleration.

3.1 Merged Room Scene Construction
and Display
We use a C/C++ extension as an interface between Unity and
other three components, including the ZED Stereo Camera, GPU
and cuboid images sent from the remote side. C/C++ supports
much more flexible memory operations than C# in Unity. ZED
SDK is written in C++ so it cannot be used by Unity directly. Also,
Unity (free license) doesn’t support CUDA directly.

In the following, we describe each step for merged room
construction and display.
Step 1: Reconstruct local and remote scene in Unity
For local and remote scene reconstruction, both require creating
blank planes and then filling them with the scene image as the
plane texture in Unity. The remote room model is reconstructed
using six plane objects and cuboid images as the texture, and the
local scene is represented by a camera object, as user’s viewpoint,
and a view plane which fills in RGB video frames taken by the
ZED Stereo Camera.

The size and position of the box, as well as the initial position of
the camera object and the view plane, are set by default in the
world coordinate system.

Also note that the camera object and the view plane must both be
in the box for background replacement, as shown in Fig. 4a.

Step 2: Set the area on the view plane and remove the
background
The area to be replaced is a quadrangle defined by four rays from
the view point through four points given by the user in the view
plane, as described in Fig. 4b.

As shown in Fig. 4c, the area to be replaced will remain fixed in
the world coordinate after the area is set, regardless of rotation or
movement.

We now remove the background in the area. Here the background
means objects at a user-determined distance from the ZED Stereo
Camera. The removal is performed by using the GPU to making
the area background transparent, thus rendering the remote scene
behind visible through the transparent area. Figure 4d shows an
example of the background replacement.
Step 3: Speed up the merged room scene display

Now the GPU is used to retrieve foreground images and to handle
the display. However, Unity doesn’t integrate CUDA, so a naïve,
platform-independent approach for display is to copy the data
from the GPU to the CPU in Unity, and then to write the data to
the GPU again for head-mounted display. To avoid duplicating
memory usage, we choose a platform-dependent approach. On
Windows, Unity uses Direct3D 11 for rendering. CUDA provides
advanced interoperability with Direct3D 11. First, we create the
texture in Unity. We then retrieve the GPU texture pointer from
Unity. Finally, we hardcopy the result of step 2 to the memory
space to which the texture pointer points. This approach only

Figure 4: (a) shows the position setting of the remote room
model and the view plane in Unity. (b) generates the area to be
replaced in the view plane using 4 rays. (c) represents the
condition when the user rotates or moves. (d) background
replacement: make the background of the area to be replaced
transparent and let the 3D model behind appears.

(d)

(a) (b) (c)

requires one GPU memory copy, which is much faster than the
platform-independent approach.

Step 4: Track the head position and then update the depth
threshold
For head tracking, both the trackers on Oculus Rift DK2 and ZED
Stereo Camera are used because the Oculus Rift DK2 provides
good head orientation tracking but the ZED Stereo Camera
provides better position tracking. After obtaining the head’s
position, we update the depth threshold and apply it to the
background removal process.

4. EXPERIMENT RESULTS

To evaluate the efficiency and the graphic result of our proposed
room structure modeling method and Live Room Merger system,
we merged our lab with a conference room. The reconstruction
result of the conference room from a panorama via cube mapping
is shown in Fig. 5. The merged results are shown in Fig. 6,
compared with the original scenes from similar viewpoints.

We assess the efficiency on the remote room side in a workflow
consisting of five stages. We first load frames of a live 360-degree
spherical video from a computer connected to a Ricoh Theta S on
the remote server, and then transform them into a cuboid-like
room structure model via cube mapping. The result is compressed
and sent to the local room desktop.
Compression is necessary to prevent the throughput from
exceeding the bandwidth on an 1Gbits wired network. For fast
compression and decompression, we use the LZ4 lossless
compression algorithm from an open-source library provided on
Github2. TCP is used for data transfer in both the first and last
stages.

We accelerate the whole progress and achieve a frame rate up to
15 fps, the highest frame rates a Ricoh Theta S supports. The
naïve approach runs the five stages sequentially and sends out the
results at a rate of 6 fps. After the first try, we found that each

stage has a similar execution time. Therefore, on the second
approach we tried pipelining the five stages. Each stage
hardcopies the results from the previous stage as input when it
receives the signal. This approach obtains a frame rate of 9 fps.

The fastest approach is described here. The five stages are
pipelined by maintaining a buffer pool of a size 5 and operating
four blocking queues as the interfaces between adjacent stages.
The result of each stage is stored in a buffer and the buffer pointer
passes among stages using the blocking queue.

After data is received from the network and stored in a buffer, the
buffer pointer is pushed into the queue at the first stage. The next
three stages pop the pointer from the blocking queue of the
previous stage, operate it, store the result in the same buffer and
then push the pointer into the blocking queue of the current stage.
At the last stage, we pop a pointer, send the data it points to
through the network and push the same pointer into the queue of
the first stage for memory reuse. Once a queue is full, no item can
be pushed into the queue until next pop happens.

This approach needs no memory copies and allows each stage to
simultaneously access and process one buffer due to the size of
buffer pool.

The merged scene is rendered at an average rate of 50 fps on the
local desktop.

5. CONCLUSION
A real-time augmented reality system replaces the background of
a local room with a 360-degree live video of a remote room. A
real-time semi-automatic box-like remote room structure
modeling method is implemented based on a spherical panorama
using pipelining and blocking queues. In addition, on the local
room side, we describe the background replacement method and
performance acceleration through the integration of compressed
cuboid images, a ZED Stereo Camera, Oculus Rift, GPU and
Unity. This system can help to provide a more immersive distance
learning or web conferencing experience. Future work will seek
to improve room modeling quality and speed up the whole
progress to further improve the immersive experience.

REFERENCES
[1] R. Cabral and Y. Furukawa. Piecewise planar and compact
floorplan reconstruction from images. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE,
2014.

[2] Y. Zhang, S. Song, P. Tan, and J. Xiao. Panocontext: A whole-
room 3d context model for panoramic scene understanding. In
Computer Vision–ECCV 2014, pages 668–686. Springer, 2014.

[3] H. Yang and H. Zhang. Efficient 3D room shape recovery
from a single panorama. In CVPR, 2016.

[4] D. Farin, W. Effelsberg, et al. Floor-plan reconstruction from
panoramic images. In Proceedings of the 15th international
conference on Multimedia, ACM, 823–826, 2007.

[5] M. Brown and D. G. Lowe. Recognising panoramas. In ICCV,
vol. 3, 1218, 2003.

[6] M. Brown and D. G. Lowe. Automatic panoramic image
stitching using invariant features. International Journal of
Computer Vision 74, 1, 59–73, 2007.

Figure 6: comparison with the original scenes above from
similar viewpoints and the merged results below.

Figure 5: an example of the proposed room structure modeling
from a spherical panorama via cube mapping.

2https://github.com/lz4/lz4

