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ABSTRACT 
A real-time augmented reality system is built to replace the 
background of the user’s room (the ‘observer room’ or ‘local 
room’) with a 360-degree live video of another room (the ‘remote 
room’). The user can see the merged room captured by an RGB-
D camera mounted on the VR headset. A 360-degree image of the 
remote room is converted into a simple box-like room structure 
model in real time. The model is loaded into Unity and replaces 
the background of the observer room, with the result then 
displayed in a VR head-mount device.  
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1. INTRODUCTION 
Augmented and virtual reality technologies (AR and VR) can be 
used to merge real and virtual worlds. Commercial VR devices, 
including Oculus Rift, HTC Vive and PS VR, synthesize the 
user's head or even body motion in VR applications. Intel’s 
Project Alloy immerses users into virtual worlds. This paper seeks 
to merge an entire 360-degree indoor virtual scene with another, 
real world, indoor scene to create a more immersive distance 
learning or web conferencing experience by merging remote 
classrooms, or conference rooms.   

A real time system is built to merge two indoor room scenes. As 
shown in Fig. 1, we reconstruct the remote room scene using a 
360-degree camera and substitute it for the background of the 
local room scene. The user can then see the merged room through 
an RGB-D camera mounted on an HMD.  

Panoramas have been widely used in multimedia applications to 
outline scenes. It has been a standard technique to capture and 
display different kinds of omni-directional information ([5], [6]), 

Figure 2: the data flow of Live Room Merger system. 

Figure 1: the overview of Live Room Merger system:  
Partial local room scene (given by the dotted lines) is replaced 
by the remote room scene. 
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leading to a large panoramic image utilization in a variety of 
circumstances. For example, lots of research has been done on 
understanding indoor scenes and reconstructing indoor floor 
plans from panoramas. Cabral and Furukawa [1] took multiple 
indoor panoramas as inputs and used structural cues from 
individual images for floor plan reconstruction. The PanoContext 
method [2] recovers the full room layout from a single panorama 
image, assuming a box-shaped room. Walls and floors are used as 
contextual information to recognize object categories and 
positions. Recent work by Yang and Zhang [3] recovered 3D 
room shapes from a single panorama using lines and superpixels 
in a constraint graph. Farin et al. [4] used a semi-automatic 
reconstruction process in which the user marks the room corners 
in the panoramic images to create a coarse reconstruction of the 
indoor environment. These studies all focus on complex floor 
plan and indoor environment reconstruction problems. The 
proposed system focuses on a real-time reconstruction method for 
simple room structures. 

Our semi-automatic remote room structure is modeled on a 
spherical panorama, and aims to reconstruct the structure of a 
box- or cuboid-shaped room in real time. The user is required to 
specify the room’s 8 corners. To enhance intuitiveness, cube 
mapping is used rather than directly converting a 360-degree 
spherical image into a cuboid-like room structure model. One 
constraint of the modeling method is that the input panorama 
should be taken with the camera directly facing any one of room 
walls.  

Our system architecture consists of two main parts, as shown in 
Fig. 2. One is the semi-automatic remote room structure 
reconstruction from a spherical panorama in real time on the 
remote room side, and the other is the background replacement 
and display on the local room side, using the room structure 
model from the remote side, an RGB-D camera and an HMD. 

To capture a live 360-degree video of the remote room, we use a 
Ricoh Theta S, a commercial 360-degree dual-fisheye camera 
which automatically stitches two fisheye images into a 360-
degree spherical image in real time. The output 360-degree 
spherical live streaming video has a resolution of 1280x640 pixels 
at a frame rate of 15 fps. To generate the user’s viewpoint on the 
local room side, we use a commercial RGB-D camera called a 
ZED Stereo Camera, mounted on an Oculus Rift DK2 headset. 
The ZED Stereo Camera's tracking and depth detection function 
also provides more degrees of freedom of head motion and 
retrieves the surrounding foreground. The desktop computer for 
the remote room structure reconstruction uses a 3.7Ghz Intel 
Xeon E5 CPU with a GTX 1080 graphics card and 64GB of 
memory, while the computer on the local room side uses a 3.5Ghz 
Intel Core i7 with a GTX 970 graphics card and 16GB of memory. 
Communication between these two computers is established via 
a 1Gbits wired network.  

The software implementation on the local room side is based on 
Microsoft Windows 7 and Unity3D. The built-in 3D world and 
the Oculus Rift Plugin in Unity 3D facilitate system construction 
and scene display in the headset. The remainder of this paper is 
structured as follows. Section 2 introduces the proposed real-time 

box-like room structure modeling from a spherical panorama. 
Section 3 provides a detailed description of the local room side. 
Section 4 shows the experimental results and Section 5 concludes 
the paper and provides directions for future work.  

2. SEMI-AUTOMATIC BOX-LIKE 
ROOM STRUCTURE MODELING FROM 
A SPHERICAL PANORAMA 
The box-like room structure modeling method from a spherical 
panorama references the position of the room’s corners as given 
by the user via cube mapping. Depending on its simplicity, it can 
be implemented in real-time with GPU acceleration.  

The process consists of two main stages: mapping a 360-degree 
image onto a cube, and then mapping the cube onto a cuboid with 
8 vertices. The first stage is done with GPU and the second uses 
only CPU. 

2.1 Mapping from A Spherical Panorama 
to A Cube Map 
Instead of directly converting a 360-degree spherical image into 
a cuboid map, this stage helps us solve the problem more 
intuitively by converting the curvy edges of a box-like room to 
either horizontal or vertical lines. This is easily accomplished by 
rewriting the C++ code in an open source project on Github1 using 
CUDA. 

2.2 Mapping from A Cube Map to A 
Cuboid Map Given 8 Vertices of Cuboid 
We divide the cube into eight equal mini-cubes, and then map 
each mini-cube to a mini-cuboid. We then merge the mini-
cuboids to obtain a simple room model. 

The first and the third steps are trivial, thus we focus on the 
mapping from a mini-cube to a mini-cuboid. This involves two 

r 

Figure 3: (a) 2D mapping between a mini-cube and a mini-
cuboid. (b) 3D mapping between a mini-cube and a mini-
cuboid. 

(a) 

(b) 

1https://github.com/rlk/envtools 
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steps: finding the ratio of the mini-cuboid’s length, width, height 
and filling pixels into the mini-cuboid.  

Problem Definition As shown in Fig. 3a, given three images A, 
B, C of a mini-cube, the length of the mini-cube t and a cuboid's 
vertex p, find the ratio of the length, width, height of the 
corresponding mini-cuboid and fill the pixels into mini-cuboid 
images A’, B’, C’. 
Observation As described in Fig. 3a, let u, v, w respectively be 
the length, width and height of the mini-cuboid and p = (a, b) in 
plane A. In addition, we can suppose that v>=u>=w anytime by 
rotating the mini-cuboid to ensure that p is in the plane A and a >= 
b. 

Observe that part 1 corresponds to image A’. Thus, we can assign 
u=a, w=b. In addition, p and p’ are actually the same point in the 
xyz coordinate, so we get v = t and u:v:w = a:t:b. By obtaining 
the coordinate of q and q’ in the xyz coordinate, we can 
correspond each part of the mini-cube with that of the mini-
cuboid and further fill the pixels.  

Proof As shown in Fig. 3b, let O=(0, 0, 0), q=(t, t, k) and q’=(u, 
l, w)=(a, l, b). Notice that Oq’q forms a line in xyz coordinate, so 
we have t/a = t/u = t/l = k/w = k/b => l = a, k = bt/a. Furthermore, 
because q’ and q’’ are actually the same point in the xyz 
coordinate, the length of p’q’’ is equal to the length of p’q’. On 
the other hand, Or’r also forms a line in the xyz coordinate. So 
we have r’=(w, w, w)=(b, b, b). Now we obtain the 
correspondence between each part of the mini-cube and the mini-
cuboid. This leaves the transformation. In mapping a 360 
spherical image to a cube, we actually map the whole box-shaped 
room. Thus we perform the inverse operation. In mapping the 
whole box-shaped room to the cube, we perform a projective 
transformation from part n’ in the mini-cuboid to part n in the 
mini-cube for n=1~7. The inverse operation of a projective 
transformation is also a projective transformation. Therefore, to 
fill pixels into the mini-cuboid, we perform a projective 
transformation from part n in the mini-cube to part n’ in the mini-
cuboid for n=1~7 given the coordinate of p, p’, q, q’, q’’, r, r’.  

3.  LOCAL ROOM SIDE DETAIL 
In this part, we describe the use of a VR headset and an RGB-D 
camera to construct a merged room scene for display with GTX 
970 graphics card acceleration. 

3.1 Merged Room Scene Construction 
and Display 
We use a C/C++ extension as an interface between Unity and 
other three components, including the ZED Stereo Camera, GPU 
and cuboid images sent from the remote side. C/C++ supports 
much more flexible memory operations than C# in Unity. ZED 
SDK is written in C++ so it cannot be used by Unity directly. Also, 
Unity (free license) doesn’t support CUDA directly.  

In the following, we describe each step for merged room 
construction and display.  
Step 1: Reconstruct local and remote scene in Unity 
For local and remote scene reconstruction, both require creating 
blank planes and then filling them with the scene image as the 
plane texture in Unity. The remote room model is reconstructed 
using six plane objects and cuboid images as the texture, and the 
local scene is represented by a camera object, as user’s viewpoint, 
and a view plane which fills in RGB video frames taken by the 
ZED Stereo Camera.  

The size and position of the box, as well as the initial position of 
the camera object and the view plane, are set by default in the 
world coordinate system. 

Also note that the camera object and the view plane must both be 
in the box for background replacement, as shown in Fig. 4a.  

Step 2: Set the area on the view plane and remove the 
background  
The area to be replaced is a quadrangle defined by four rays from 
the view point through four points given by the user in the view 
plane, as described in Fig. 4b. 

As shown in Fig. 4c, the area to be replaced will remain fixed in 
the world coordinate after the area is set, regardless of rotation or 
movement.  

We now remove the background in the area. Here the background 
means objects at a user-determined distance from the ZED Stereo 
Camera. The removal is performed by using the GPU to making 
the area background transparent, thus rendering the remote scene 
behind visible through the transparent area. Figure 4d shows an 
example of the background replacement.  
Step 3: Speed up the merged room scene display 

Now the GPU is used to retrieve foreground images and to handle 
the display. However, Unity doesn’t integrate CUDA, so a naïve, 
platform-independent approach for display is to copy the data 
from the GPU to the CPU in Unity, and then to write the data to 
the GPU again for head-mounted display. To avoid duplicating 
memory usage, we choose a platform-dependent approach. On 
Windows, Unity uses Direct3D 11 for rendering. CUDA provides 
advanced interoperability with Direct3D 11. First, we create the 
texture in Unity. We then retrieve the GPU texture pointer from 
Unity. Finally, we hardcopy the result of step 2 to the memory 
space to which the texture pointer points. This approach only 

Figure 4: (a) shows the position setting of the remote room 
model and the view plane in Unity. (b) generates the area to be 
replaced in the view plane using 4 rays. (c) represents the 
condition when the user rotates or moves. (d) background 
replacement: make the background of the area to be replaced 
transparent and let the 3D model behind appears.  

(d) 

(a) (b) (c) 



 

 

requires one GPU memory copy, which is much faster than the 
platform-independent approach.  

Step 4: Track the head position and then update the depth 
threshold  
For head tracking, both the trackers on Oculus Rift DK2 and ZED 
Stereo Camera are used because the Oculus Rift DK2 provides 
good head orientation tracking but the ZED Stereo Camera 
provides better position tracking. After obtaining the head’s 
position, we update the depth threshold and apply it to the 
background removal process. 

4. EXPERIMENT RESULTS 

To evaluate the efficiency and the graphic result of our proposed 
room structure modeling method and Live Room Merger system, 
we merged our lab with a conference room. The reconstruction 
result of the conference room from a panorama via cube mapping 
is shown in Fig. 5. The merged results are shown in Fig. 6, 
compared with the original scenes from similar viewpoints.  

We assess the efficiency on the remote room side in a workflow 
consisting of five stages. We first load frames of a live 360-degree 
spherical video from a computer connected to a Ricoh Theta S on 
the remote server, and then transform them into a cuboid-like 
room structure model via cube mapping. The result is compressed 
and sent to the local room desktop.  
Compression is necessary to prevent the throughput from 
exceeding the bandwidth on an 1Gbits wired network. For fast 
compression and decompression, we use the LZ4 lossless 
compression algorithm from an open-source library provided on 
Github2. TCP is used for data transfer in both the first and last 
stages.  

We accelerate the whole progress and achieve a frame rate up to 
15 fps, the highest frame rates a Ricoh Theta S supports. The 
naïve approach runs the five stages sequentially and sends out the 
results at a rate of 6 fps. After the first try, we found that each 

stage has a similar execution time. Therefore, on the second 
approach we tried pipelining the five stages. Each stage 
hardcopies the results from the previous stage as input when it 
receives the signal. This approach obtains a frame rate of 9 fps. 

The fastest approach is described here. The five stages are 
pipelined by maintaining a buffer pool of a size 5 and operating 
four blocking queues as the interfaces between adjacent stages. 
The result of each stage is stored in a buffer and the buffer pointer 
passes among stages using the blocking queue.  

After data is received from the network and stored in a buffer, the 
buffer pointer is pushed into the queue at the first stage. The next 
three stages pop the pointer from the blocking queue of the 
previous stage, operate it, store the result in the same buffer and 
then push the pointer into the blocking queue of the current stage. 
At the last stage, we pop a pointer, send the data it points to 
through the network and push the same pointer into the queue of 
the first stage for memory reuse. Once a queue is full, no item can 
be pushed into the queue until next pop happens.  

This approach needs no memory copies and allows each stage to 
simultaneously access and process one buffer due to the size of 
buffer pool.  

The merged scene is rendered at an average rate of 50 fps on the 
local desktop. 

5. CONCLUSION 
A real-time augmented reality system replaces the background of 
a local room with a 360-degree live video of a remote room. A 
real-time semi-automatic box-like remote room structure 
modeling method is implemented based on a spherical panorama 
using pipelining and blocking queues. In addition, on the local 
room side, we describe the background replacement method and 
performance acceleration through the integration of compressed 
cuboid images, a ZED Stereo Camera, Oculus Rift, GPU and 
Unity. This system can help to provide a more immersive distance 
learning or web conferencing experience. Future work will seek 
to improve room modeling quality and speed up the whole 
progress to further improve the immersive experience.  
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Figure 6: comparison with the original scenes above from 
similar viewpoints and the merged results below.  

Figure 5: an example of the proposed room structure modeling 
from a spherical panorama via cube mapping. 

2https://github.com/lz4/lz4 


